Expression of the crucifer-infecting TMV-Cg movement protein in tobacco plants complements in trans a TMV-U1 trafficking-deficient mutant.

نویسندگان

  • Felipe Díaz-Griffero
  • Carmen Espinoza Cancino
  • Consuelo Medina Arévalo
  • Patricio Arce-Johnson
چکیده

Tobamovirus movement proteins play a determinant role in the establishment of infections in plants, allowing the local movement of viral RNA genome through plasmodesmatas. We expressed the movement protein (MP) of the crucifer- and garlic-infecting Tobacco Mosaic Virus strain Cg (TMV-Cg) in both resistant Xanthi NN and sensitive Xanthi nn Nicotiana tabacum plants. MP-Cg function was assayed by inoculating transgenic plants with a trafficking-deficient mutant of TMV strain U1. Following infection, local necrotic lesions were developed in resistant transgenic plants, and a systemic infection was produced in sensitive tobaccos. Thus, movement function of the mutant virus was complemented in trans by MP-Cg expressed in transgenic plants, causing the same symptoms as wild-type strain. We demonstrated that the function of MP-U1 could be replaced efficiently by MP-Cg, even though these proteins share only 36% of identity. Similar hydrophobic patterns of MP-Cg and MP-U1 suggests structure and function conservations of both proteins. This work is an example of how two tobamoviruses differing in their host range help to understand viral movement mechanism during the infection.

منابع مشابه

Study on Genetic Diversity of Terminal Fragment Sequence of Isolated Persian Tobacco Mosaic Virus

Tobacco mosaic virus (TMV) is one of the devastating plant viruses in the world that infects more than 200 plant species. Movement protein plays a supportive role in the movement of other plant viruses, and viral coat protein is highly expressed in infected plants and affects replication and movements of TMV. In order to investigate genetic variation in the terminal fragment sequence in Iranian...

متن کامل

WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis.

WRKY transcription factors are key players in the plant immune response, but less is known about their involvement in antiviral defense than about their roles in defense against bacterial or fungi pathogens. Here, we report that Arabidopsis thaliana WRKY DNA-binding protein 8 (WRKY8) has a role in mediating the long-distance movement of crucifer-infecting tobacco mosaic virus (TMV-cg). The expr...

متن کامل

Dysfunctionality of a tobacco mosaic virus movement protein mutant mimicking threonine 104 phosphorylation.

Replication of tobacco mosaic virus (TMV) is connected with endoplasmic reticulum (ER)-associated membranes at early stages of infection. This study reports that TMV movement protein (MP)-specific protein kinases (PKs) associated with the ER of tobacco were capable of phosphorylating Thr(104) in TMV MP. The MP-specific PKs with apparent molecular masses of about 45-50 kDa and 38 kDa were reveal...

متن کامل

Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector.

Tobacco mosaic virus (TMV) produces large quantities of RNA and protein on infection of plant cells. This and other features, attributable to its autonomous replication, make TMV an attractive candidate for expression of foreign sequences in plants. However, previous attempts to construct expression vectors based on plant RNA viruses, such as TMV, have been unsuccessful in obtaining systemic an...

متن کامل

Inhibition of tobacco mosaic virus movement by expression of an actin-binding protein.

The tobacco mosaic virus (TMV) movement protein (MP) required for the cell-to-cell spread of viral RNA interacts with the endoplasmic reticulum (ER) as well as with the cytoskeleton during infection. Whereas associations of MP with ER and microtubules have been intensely investigated, research on the role of actin has been rather scarce. We demonstrate that Nicotiana benthamiana plants transgen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Biological research

دوره 39 2  شماره 

صفحات  -

تاریخ انتشار 2006